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Abstract. We prove analytically the Sasa—Satsuma conjecture which states that their solution
of bilinear form of the Ernst equation gives the Neugebauere—Kramer solution in particular
cases. This proof relates Hirota's direct method with tléelBund transformation method and
opens the way towards the comprehensive interpretation of the Ernst equation.

1. Introduction

In [1, 2] one of the authors (TF) discussed the stationary axisymmetric solution, Tomimatsu—
Sato solution [3] (hereafter TS solution) of the Einstein equation in the framework of Hirota’s
direct method (direct method) [4]. This paper describes further development of those papers.

The motivation to study the solutions of the Einstein’s equation in the direct method is as
follows. In the direct method integrability is reduced to Pfaffian’s identities Arsbliton
solutions can be constructed in very simple and systematic ways. This is a great merit
of the direct method. However, this is the case in typical integrable systems such as the
KdV, KP and Toda lattice equations etc, which can be described in the ‘complete’ bilinear
forms. Here ‘complete’ means that these equations are expressed in terms of the Hirota's
derivatives and constant coefficients. The Ernst equation is indeed beyond this category.
The TS solutions, its special series of solutions, satisfy some bilinear forms. However,
the bilinear forms are not complete in the sense that they involve ordinary derivatives and
that the coefficients of differentiated terms are not constants but functions of independent
variables. It also can not be expressed in the naive Lax pairs [5, 6]. Therefore, it was
not clear whether the direct method works well in this case. In [1] it was proved that the
direct method works well in the TS solutions. However, the proof (whose meaning will
be described in the last section) was complete in the restricted case of one dimension, the
Weyl solution, and incomplete in full two dimensions, the TS solution.

As is well known, there are many approaches to integrable systems; inverse scattering,
Backlund transformation, Lax representation, Sato theory etc. The direct method is one
among them and they are closely connected with one another. So it is natural to consider
that the difficulties mentioned above may be overcome by adopting the various techniques
other than the direct method. This paper is one of such trials.

Using the Backlund transformation, Y Nakamura [7] found two series of solutions to
the Ernst equation. Unfortunately these solutions are not physical. In the direct method,
the Ernst equation is decomposed to the bilinear forms in many ways. By rewriting the
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Backlund transformation adopted by Nakamura in bilinear forms, one of the authors (NS)
and Satsuma succeeded to extend Nakamura’s solutions (SS solutions) and showed that they
include the physical soliton solutions, Neugebauer—Kramer solutions (NK solutions) [8] in
particular cases. We call the latter statement the Sasa—Satsuma conjecture (SS conjecture)
since Sasa and Satsuma showed that their solutions inciNdsolton solution of the NK
solution for the cases aV = 2 and 3 by means of computer program ‘REDUCE 3’ [9].
Namely, the SS solution is linked with the NK solution through the SS conjecture. The
NK solutions are reduced to the TS solutions in a limit. So the analytical proof of the SS
conjecture opens the way towards the comprehensive understanding of the Ernst equation
and complements the above-mentioned deficit of the previous works.

The central purpose of this work is to prove the SS conjecture analytically for general
N. However, using a merit of the direct method, we can extend the SS solutions furthermore
and obtain more general solutions.

This paper is organized as follows. In section 2, we review the SS conjecture.
Section 3 only contains the analytical proof of the SS conjecture. Straightforward but
tedious calculations in the proof are referred to in the appendices. The extension of the
SS solutions is discussed in section 4. Section 5 is devoted to concluding remarks and
discussion.

2. The Ernst equation and Sasa—Satsuma conjecture

The stationary axisymmetric vacuum gravitational field equations are reduced to the
following two equations

- -~ 1 . - - -
f (fpp + ;fp +f-z) — = fP+yi+yZ=0 (2.1)

- 1 . .

S (pr + ;w,o + 1//zz> - 2fp¢p - 2fz¢z =0 (2-2)
where p and z are usual cylindrical coordinates and subscripts denote partial derivatives
such asfpp = ?;TJZC etc. Defining a complex functioh by

1 _ ~ _ .
_l-/-w 2.3)
1+ f+iy
we have the Ernst equation [10]:
1
(& — 1) (Epp bt s) — 2% (&2 +82) =0. (2.4)
By transforming the dependent variables as
- F _H 25)
=z =G .
and introducingk by
2 2
K = % 2.6)
equations (2.1) and (2.2) are decomposed into
. 1 -
D’+-D,+D?|G-F=0 (2.7)
L P i
- 1 z
D§+;Dp+D§ H-F=0 (2.8)
- 1 Z
Dﬁ—i—;Dp—i—Df K-F=0 (2.9)
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where D, and D, are Hirota's D-operators with respect tp andz. Using the Ecklund
transformation, Y Nakamura found a series of solutions to equations (2.1), (2.2) [7],

B pnflA(n) ipnflg(nJrl)
f=wn V= "gon (2.10)
or to equations (2.7)—(2.9)
F = pnOA(n) G = pno—n+lA(n—l) K = p"0+"—1A(”+1) H = ipnoA'(n+l)
(2.11)
with ng = n(n — 2)/2. Here the determinant$™ and A™ are given by
Uo iuy i2u, e iy, g
iuy 172} iuy ... in_zun_z
A — | i%up iug ug S L T (2.12)
inilun_l i"izun_z i"73u,,_3 e Uuop
and
A g |1 (2.13)
n

where the minor ™ ; is defined by deleting thah row and thejth column fromA ™.

The elements of the determinants (2.12) and (2.13) satisfy the recurrence relations:

m—1
(E)p + ) Uy = —0Upy—1
0

(ap _ ﬂ) Uor = Bty (m=1,2,3,...). (2.14)
P
It is noticed that the Jacobi identity reads
ABTD g0=D) _[4]2 _[f0FD]2 (2.15)

By substituting equations (2.11) into equations (2.7)—(2.9), we findAftatand A™ satisfy
the bilinear forms,

. _
D} Dy DE| (0" AT - (pA®) = 0 (2.16)
- 1 -

Dj o+ 2Dy + DE | (o EACD) - (o0 A) = 0 (2.17)
- 1 _ 3

D} + D, DE{ (p0A"H) - (o A™) =0, (2.18)

From these facts Sasa and Satsuma found a new series of exact solutions (SS solutions) [9]:
~ A
f = A‘“(nJrl) _ 4{ilonflA(n+1) + anplan(nfl)

In

i[‘k%lpn—lA(n+1) + anpl—nA(n—l)]
A+l _ 4‘%pn—lA(nJrl) + anpl—nA(n—l)

n

(2.19)

Y= (2.20)

with a constant;,,. Furthermore, it has been argued that the SS solutions (2.19) and (2.20)
include the NK solutions in the particular choice of an initial valugand constant,y

as equations (2.30) and (2.33), respectively (SS conjecture). They checked this conjecture
numerically for theN = 1,2 andN = 3 cases. The main purpose of this paper is to prove
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analytically the SS conjecture for arbitrary. Let us explain the SS conjecture in more
detail. Let us formulate this conjecture for arbitravy
The NK solutions are given by [8]

82N
fov = (2.21)
fon
where foy and g,y are the double Casorati determinants:
1 1 1
71 22 Zon
N-1 N-1 N-1
—| 4 22 cee Lon
fon = Sy S, o Son (2.22)
2181 2282 Zon Son
Ziv_lsl Z’gv_lsz ZQIN Lo
1 1 1
21 22 Zon
N N N
=| @ 2 e N 2.23
s2n S1 S» ... Sw (2.23)
2151 2282 ... zonSon
V7281 RS, o S

and

S; = r;e” rj =402+ (2 +z))? (j=1,2,...,2N) (2.24)

with real parameters; andw;. From the definition off andy it follows that
i JavSoy — 8oy _ _1(f3vgan — fongsy)
(fon + g2nv)(foy + &5y) (fon + g2n)(fon + &55)
The SS conjecture states that the SS solutions (2.19) and (2.20) with particular conditions
(2.30) and (2.33) satisfy equation (2.25) when the NK solutions (2.22), (2.23) have been

substituted into the right-handside of equation (2.25). Given the NK solytigngay, if
the determinants\™ and A™ take the forms,

(2.25)

p2NHLA@N-D _ agmfz*lv (2.26)
ACN) L JC@NTD — 2B £ (2.27)
ACN) _ A@NHD — opg,\ex (2.28)
p2VLACNYD — 40,0 Behy fon (2.29)

equation (2.25) is automatically satisfied. He?eis a common factor to be determined.
Sasa and Satsuma found f§r= 1, 2 and 3 that equations (2.26)—(2.29) are satisfied when
ug andayy are chosen as follows

2N
o)
uo="boy » Cigr (2.30)
j=1 J
with

: 2N _ )N
C; = (—1)f+1ZZN|: 1 ] and boy = (DN LEHNN-D ZZ AN D (2.31)
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where Z,y is Vandermonde’s determinant given by

1 1 ... 1
21 22 .. 2N
Zow=| & B . By . (2.32)
_ zfl\'lfl zgl\'lfl .. z%,lgfl
The constantioy is
asy = =4V Zonboy. (2.33)
In this caseB becomes
B = (p™S5S; ... S50 (2.34)

Then the analytical proof of the SS conjecture for an arbitféris reduced to the proof of
a set of equations (2.26)—(2.29).

3. The proof of the Sasa—Satsuma conjecture

In this section we give the analytical proof of the SS conjecture. From equations (2.26)-
(2.29) it is estimated that™ and A“™ should be factorized as

ACNTD = g By (3.1)
A@N) 4 f@N+D _ BrYN 3.2)
A@N) _ J@N+D _ s (3.3)
ACNTD — sy (3.4)
where the determinantsy, By, yy andéy are defined as
N
av=mi| V] 35)
_ N+1
,3N—5N|:N+1:| (3.6)
uo + uz —u1—us3 Uz + ua coe DM Muy_g +ungr)
U1+ u3 uo — Us —ur+us ... (=DN(uy_2—uni2)
YN = Uz + g ui — Us uo + Ue coo DV Muy_z+unia) (3.7)
Uy-1+UNy1 UN-—2 —UNt2 UN-3FTUNGZ ... uo + (=N uyy
uo —uj U —usz ... (=D)Nuy
2u, ug — U —u1+u3 Up — Uy coo DV Muyog —untr)
2u; Ui —us uo + ug —ur—us ... (DY P(uy_z+uyi2)
S = | 2u3 Up — Ug Ui+ us up — Ue coe (DN Buy_z —unsa)|-
2uy UN-1—UNt1 UN—2FUN{2 UN-_3—UN43 ... uo + (=N ugy
(3.8)
u, can be constructed from the recursion relation (2.14) with the initial condition (2.30):
up = Xo (39)
k
k+1
_ k+1-n 2n 2k+1
Uk42 = ;(—1) PEE—— fn Cken 27 Xy + 277 " Xp 41 (3.10)
k
ugr1 = Yy (=D Crmn2yy (k=0,1,2..) (3.11)

n=0
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where
1 2N ) _—
W= e Y gt (3.12)
j=1
1 2N ]
= > CEYEH T (1=0,12..). (3.13)
i=1

Substituting the special solutions (3.9)—(3.11) into equations (3.5)—(3.8) we obtain after
tedious calculations (see appendix A)

X1 1 cee Xp—1 Yi—1 Xk
Y1 X2 —X1 ... Yk-1 Xk — Xk—1 Yk
- 2 . . . .
ay = (=DF 12D ' - (3.14)
Xe—1 Yk—1 cee X2k—3 Yor-3 X2k—2
Yk-1 Xk — Xg—1 ... Y2%k-3 X2k—2 — X2k—3 Y2k-2
Xk Yk cee X2k—2 Y2k—2 X2k—1
X1 y1 Y - | Yk—-1
Y1 X2 —X1 ... Vi1 X — X—1
k—1(2k—2)2 . . . . .
ax_1= (-1 2t ) : : .. : : (3-15)
Xk—1 Yk—1 cee X2%-3 Y2k—-3
Yi-1 Xk — Xk-1 ... Y2%-3 X2%k-2 — X2%-3
and
X0 Yo cee Xp—1 V-1
Yo X1 — X0 cee V-1 Xk — Xk—1
ko(2k—1)2 . .
Bax = (—1F2#Y (3.16)
Xk—1 V-1 R ) ) Yok—-2
Yik-1 Xk — Xg—-1  --.  Y2k—-2 X2%k-1 — X2%k-2
X0 Yo cee Xp—1 YVi-1 Xk
Yo X1 — X0 cee V-1 Xk — Xk—1 Yk
kn(2K)2 : : : : :
Bai1 = (=127 - : : : e (3.17)
Xk—1 Yk—-1 cee X2k—2 Yor—2 X2k—1
Yk-1 Xk — Xk—1  --.  Y2k—2 X2k—1— X2%k—2 Y2k-1
Xk Yk . X2k—1 Yok-1 X2k

We can expressy and 8y in terms of the Hankel determinants by taking the condition
r? = p?+ (z + z;)? into consideration (see appendix C):

Vo U1 . UnN—_2
(N=2? | p Vo ... Un_1
_ LN—D(N+2) 2 1 N
ay = (=1)2 i )W (3.18)
UN-2 UN-1 ... U2N-4
and
wo wq e WN-1
(N=17 | w w
o ivv-p 2 1 2 ... N
fu = (DI (3.19)
wWN-1 WN ... W2N-2
where

2N 2N
=2 GSz  w=) 57 (3.20)
j=1 j=1"j
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We have the relation between some Hankel determinants and double Casorati
determinants:

11 dm1
12 du2
fo ... IN-1 .
5 ... In 1 o é
— (1) INN-D) -1 N MN 3921
: : : =D MY L Ym1 ( )
tNe1 Iy ... fon_2 Vi ... Ym2
Yimn ... YmMmM-N
where

M
b= %e
j=1

Y (3.22)
Djn = Z}I_lk ll_k[;é‘(Zk —zj)e; Yin = Zf_l-
=Lk#J
By virtue of this relation we can link the SS solution with the NK solution:
_ N+1 2N
ay = (=1 WZZN gon (3.23)
2(N-1) ZNflf*
By = —- 2N -2 (3.24)
pNN=2) gxgx §x
PA
yw = (D" P Zow " fon (3.25)
ON? ZN g%
Sy = an8an (3.26)

pNL SISy LS5y
Equations (3.23)-(3.26) and equations (3.1)—(3.4) immediately lead to equations (2.26)—
(2.29) and, therefore, the SS conjecture has been proved explicitly.

4. The extension of Sasa—Satsuma solutions

In the direct method, the Ernst equation is decomposed to the bilinear forms in many
different ways and correspondingly we obtain various series of solutions. Also the special
decomposition of the Ernst equations (2.7)—(2.9) or equivalently (2.16)—(2.18) enable us
to extend the SS solutions furthermore. Namely by the help of equations (2.7)—(2.9) and
(2.16)—(2.18) we can generalize the functidnsG, H and K in equations (2.7)—(2.9) as

F =dp™A™ (4.1)
G = pno[alA~(n+l) + blpnflA(nle) + Clplan(nfl)] (4.2)
H = pno[azﬁ(n-ﬁ-l) 4 byp"LAGHD 4 chl—nA(n—l)] (4.3)
K = png[asA'(n+1) + bspnflA(nJrl) + Csplan(nfl)] (4.4)

with the constants;, b;, ¢;(i = 1, 2, 3) andd. HoweverF, G, H andK are not independent
and subject to equation (2.6) or equivalently the Jacobi identity (2.15). Hence these constants
must satisfy the relations:

a1bsz + azby = 2aby (4-5)
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aics + azcy = 2axco (4.6)

bib3 = b3 4.7

cic3 =3 (4.8)

aiaz — a% = d? (4.9)

bicz + bsct — 2bocy = d®. (4.10)
Then we have two series of exact solutions of equations (2.1) and (2.2):

~ F H

f= G == (4.11)

~ F H

=< V= < (4.12)

which includes both the SS solutiong; (= a3 = d = 1 anda, = 0) and Nakamura’'s
solutions ¢1 = b3 = d = 1,a, = i and others= 0) [7]. The relation between our

solutions (4.11), (4.12) and the NK solutions on an arbitrary background, for instance, the
extension to the Einstein—-Maxwell system [11] or the Korotkin—Matveev solutions [12] is
still not obvious.

5. Concluding remarks and discussion

In the previous section we analytically proved that the SS solutions include the NK solutions
in a particular case. Substituting equations (2.26)—(2.29) into equations (2.16)—(2.18) we
have the bilinear forms [9] satisfied by NK solutions:

1 -
D + PG DZ| (fangaw) - (82v&5w — fon f3n) = O (5.1)
- 1 -
Di + ;DP + Dzz (fongan) - (82ng5y — fan foy) =0 (5.2)
- 1 -
D} + ;Dp + D? | (gangsy + fan fan) - (8angiy — fon f3y) =0. (5.3)

We have indirectly proved equations (5.1)—(5.3) through tlgekBind transformation.
However, it is another mathematically interesting problem to prove equations (5.1)—(5.3)
directly. This, however, is still an open question. In [1, 2], we were confronted with the
same problem in Tomimatsu—Sato solutions, that is, direct proof of Nakamura’s conjecture
which will be explained briefly. Before discussing this problem we add one more note in
relation with equations (5.1)—(5.3). Namely there is another series of exact solutions called
the extended-TS solutions [13, = g',,/f’,. The bilinear forms satisfied by them have
been also proposed [9]:

L(f'8") (88— fuf ) =0 (5.4)

L(f"8'w) - (8ng — fuf) =0 (5.5)

L(ggn+ f1af ) - (&g = faf ) =0 (5.6)
where

L= (x*—1DD2+x(Dy + ;) — (y* — D3 — y(Dy + dy). (5.7)

The independent variables and y are usual prolated spheroidal coordinates which are
connected tp andz by

p=Kx?— 1M1 - y?/? z=Kxy+¢ (5.8)
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with constantsk and¢. To obtain the explicit expressions of the extended-TS solutions
and to prove equations (5.4)—(5.6) for arbitranare unsolved problems.

Let us return to the problem of the TS solution. A Nakamura gave the following
conjecture (Nakamura’s conjecture) [14]: The general solution of Toda moleculenwith
lattice cites reproduces the TS solution with the deformation parafeter in a particular
choice of initial function. Direct proof of this conjecture is successful only in the restricted
case, Weyl solution, which is obtained by the dimensional reduction by one. The trouble
comes from the fact that the TS solution is embedded in two-dimensional space. Concretely
speaking, the reason for the difficulties comes from the fact that two directional Wronskians
appeared in two dimensions prohibitdiBker’s identity, one of Pfaffian’s identities, unlike
in the one-dimensional case. We also discussed the same problem from a quite different
approach, acceleration method [2]. However, the situation is quite the same as in the direct
method. In this case the trouble is that the addition theorem [15], the key formula for the
proof, is only valid in one dimension. Thus, for the sake of completeness we may be forced
to go beyond the bilinear formalism or to develop a new acceleration method. The proof of
the SS conjecture in this paper has circumvented this trouble in the two-dimensional case
by the help of the Bcklund transformation. So this may be a useful hint to the extensions
mentioned above.
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Appendix A

First, we show equations (3.14) and (3.15). Definijgand O, as

E, =uxy_>+ uy (A1)
O = g1 + uzsn (k=1,23,..) (A2)
it follows from equations (3.9)—(3.11) that
Ey -0 E )
01 Ei1—E> —01+4+ 07 Ey, — E3
Ey 01—02 Ei—Ex+Es —01+ 02— 03
AN =10, E;—E3 O01—0,+03 Ei—E>x+E3—E;s ...|* (A3)

Es O,—03 Ex;—E3+E; O1— 02+ 03— 0y

In the case of the special solutions (3.9)—(3.11) we have

E = EY O =02 (A4)
where we have introduced " and 0\ as
k
2k—1
(a) —n —
EY = ;(—1)" o1 k-2 Cen2 Mg (AS)
k
0 = (=D 140 Cin2 Yusa. (AB)
n=1

We substitute equations (A5) and (A6) into equation (A3) and transform equation (A3)
according to the following procedures in the ‘step
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(i) (2m + 1)th row) —(=1" 2 L Couganx (20 — Dth row), m = n,n +
1....051-1

(ii) The similar calculations for columns.

(iii) (2m+2)th row) —(=1)" ", . Crg1—n x ((@n)throw),m = n, n+1, ..., [NT‘l]—
1.

(iv) The similar calculations for columns.

Calculation from the step 1 ta for ay leads to equations (3.14) and (3.15), which we
will show by induction.

Suppose that the above statement is correctMoe 1, 2,...2k. Application of the
procedures fory to a1 leads to the expression as

2x1 4y1 8xo 16y2 Ce 22k—lxk —C2r,1
-4y 8(x1 — x2) —16y>  32(xp —x3) ... — 2%y, Cok,2
8X2 16y2 32X3 64y3 . 22k+1xk+1 —C2,3
agpr =| ~16y2 3202 —x3)  —64ys  128(x3—x4) ... —2%F2y 1 caka
2%ty 2%y 2%y 2% 2y L 2%y —can
Cok,1 C2k,2 C2%,3 Cok 4 e Cok,2k—1 Cok, 2k
(A7)
with
2 0
o omir= Y 2Cm o2 .. n=0,1,....k—1 (A8)
m=0
2 0 0
Couomiz= Y mCn(E i — Eopimsr) =01 k=2 (A9)
m=0
2%
cau =) (D" ED. (A10)
m=1

Equations (A8) and (A9) were derived from the relations:

2 © o 2+1 > © 2 ©
Z(_l)m Ok_[+m - Z(_l)l_n I+nlen Z 2Cn 0k—n+m = Z 2Cm 0k—l+m
m=0 |

n=0 2n + 1 m=0 m=0
(A11)
21+1 0 -1 2n 0 0
YD EL = Y DT i1 Cron Y OB — B sn)
m=0 n=0 m=0
2 0 0
= Z ZICm(Elijl+m - El(c—)l+m+l)' (A12)
m=0
For detail see appendix B.
It is easily seen that
2n
> 2Cn02,,, =220 (A13)
m=0

2n

0 0
> 2Cn(EX, = B2 iy) = 2/(E — EJ))). (A14)
m=0
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Performing the procedures from the step 1 to stejm equation (A3), we have

2 4y, 8x, 16y, L 2%y -0
—4yq 8(x1 — x2) —16y2 32(x2 — x3) .. —2%y, E,io) — E,g_):l
81, 16y, 323 64y3 U S —220Y
Qoppq = | ~16v2 32vz—x3)  —Bdyz  128xz-x) ... Py 2ED - EY)
22%—1y, 2%y, 2%y 2442y L M3, _92(k—1) Olikfl)
0 EP-EJ, 220" 22EP-ED) ... 2-bolP Con 2
(A15)
The procedures,
(i) (2k)th row — (=) " ;_1,,Cr_wx Cn)throw,n =1,2, ..., k—1
(i) the similar processes for columns,
reduce equation (A15) to
2x1 4y1 e 22k7]')61c 22kyk
—4y, 8(x1 — x2) e —2%y, 224 (e — xp41)
i1 =| : . : : (A16)
221y 2%y ce 2%y 2% 2y 1
=%y 22 —xpp1) .. —2% 2y 2% (g — xk)
Likewise, a2 is expressed as
2 4y, . 2% 1y 2%y C2k4+1,1
—4y1 8(x1 — x2) - —2%y; 224 —xpq1)  —c2a412
Aopsn = : : : : : (A17)
2Ly 2%y s 2%y 242y 1 C2k+1,2%-1
—2%ye 22y —xipn) ... 2% 2yp g 2% lagyg —xa)  —caria
C2k+1,1 C2k+1.2 cee C2k+1,2k—1 C2k+1,2k C2k+1,2k+1
with
2n
0
Cosroansrt = D mCnEf 1 im (A18)
m=0
2 0 0
© ©
Carrzniz = Y 2Cn (O = Oy i) (n=0,1,....k—1) (A19)
m=0
2%+1
-1 (0
sz = y_(~D)"ED. (A20)
m=1
It is easily checked that
< 0
2n
Z ZnCmEli_:l_n+m =2 E]EH_,_)]_ (AZ].)
m=0
2n
© © 2n+1 ()
Z 20Cn (O = Opya ) = 277 By (A22)
m=0
with
E(a) Xk:( 1)k7n 2k —1 C 22n71 (A23)
Kk — 2n 1 k—=24n“k—n Yn+a-

n=1
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Then we have

_ 0
2x1 4y, L 2%y 2%y, EQD,
=@
—4y1 8(x1 — x2) .. —2%y 2% (g — xpq1) *2E,£+)1
0242 = : : : : : e (A24)
2%=1y, 22kyk L 2% By 24k72y2k—1 22k72E1§+1 )
2%y 2y —xiq1) .. 2% Py 2% ey —a) —22LENY
(0 70 2k—2 17 (k—1) 2k—1 7 (k—1) .
Eii1 2 pe 2 Eiy 2 Eig C2k+1,2k+1

The procedures,
(i) (2k + 1)th row —(—=D)kH2n 24, ) Crpayx (20— Dthrow,n =0,1,... .k
(i) the similar calculations for columns,

give
2x1 4y1 . 2%y 2%y, 224141
—4y; 8(x1 — x2) s —2%y; 224 —xp1) =222y
o = : : . : : : A25
a2 221y, 2%y, L 2% By 2%=2y0 1 %=Ly, ( )
=%y 2y —xpp1) ... 2% 2yy g 2% Ygg —xy) 2%y
224y q 2242y, e 2% 1y 2% yor 2%+ Ly 1

Therefore we have verified equations (3.14) and (3.15).
Next, we will show equations (3.16) and (3.17). By meansEgfand Oy, By is
expressed as

uo —u1 U —us ug
2u; 2up— Ep —2u1+ 01 2up — E» —2u3z + 02
2up 2u1— 01 2ug— (E1— E2) —2u1+ (01— 02) 2up — (E2 — E3)

BN =|2uz 2up—E» 2u1— (01— 02) 2ug— (Ex—Ez+E3)  —2ui+ (01— O2+ 03)
2ug 2u3— 02 2up —(E2—E3) 2u1— (01— 02+ 03) 2u0— (E1— E2+ E3— Ey)

.(A26)

Let us transform equation (A26) along the procedures:
(i) Third row +(2 x 1)th row,
(i) mth row 4+ (m — 2)th row,m = 4,5, ..., N,
(iii) mth column+ (m — 2)th column,m =3,4,..., N.
Substituting (3.9)—(3.11) into it, we obtain
X0 Yo EY —0y EY
~2y0 2(o-x) 0  EY-EY -0 + 0y
2 -0 2 220" 22E5)
Bv=1200 EO® _EQ 200 2D _gd)y  _2200L - o)
2y 0 -0y 2EP 220" -05") 2AEP - EP +EY)
(A27)

The similar procedures fary lead us to equations (3.16) and (3.17).

Appendix B

Here we show equations (Al11) and (A12). From the comparison of the coefficients of both
hand sides of equations (A11) and (A12), it follows that they are equivalent to the relations
fora=0,1,...,n:

1 f—a 1 n—a: even
Z(—l) n4k+1Cn—k 2% Cik—q =
k=a

B1
0 n —a: odd. (B1)
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It should be noticed that
- (n +k +1)! d
_1 k7 7 U T ke = — n+an 1— Zx BZ
é( o SR = 20)] (B2)
where P, (1 — 2x) are the Legendre polynomials.

B.1. The case =0

From equation (B2), we have

n 1 d
Y (D k1 Cri uCi = 3 / dxx—"—%a[x"“ml—zw]=%[1+<—1>"]. (B3)
k=0 0

B.2. The case > 1

We have
Y D G s Cha = ) (0P 0Cy Y (D k1 Cok skrapCee (B4
k=a p=0 k=0

From equation (B2), we obtain fgr =0,1,...,a — 1,
a—p

n n (n+k+ 1! q;
D} ki 1Cot ra—pCr = ¥ (=D -
;( )"ttt Cok 2= Ci Q )<k!>2(n—k>!j;k+j

a—p 1 ) d
= Y [ do L A - 20) = 2y (85)
| 0
with YY1 g; = 2*~7~*. Thus we can verify equation (B1) as follows

Y D Gk aCra =3+ Y (D7 G2 =D = 31+ (1" ],
k=a

p=0
(B6)
Appendix C
Here we show equation (3.19). Let us defikig andY, as
2N )
X, =) Ceurt
j=1
N | (C1)
Vo= GG+
j=1
Then equations (3.16) and (3.17) are rewritten as
Xo Yo . ¢ Yi_1
) 22k-1? Yo X1—p*X0 ... Y X — p?Xi1
Pa= D o | : R : (C2)
Xp-1 Yi1 oo X2 Yoo
Yeer Xe—p?Xecr oo Yoo Xoe1— p?Xoo
2(2k)?

N
Ba+1 = (=1 ST
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Xo Yo oo X1 Y1
Yo X1—p*Xo ... Y X — p?Xi-1
«| : : :
X1 Yic1 v X2 Yoo
Yicr Xe—p?Xec1 oo Yao Xae1— p?Xao
Xy Y e Xoa Y1

Introducing p® as
2N

C;
At =3 S+

X” and Yn are expressed as
n
X” — nC a'm (O)
m=0

n
Y, —ZZ Cna"~ mp,(,?)+an a" " pd
m=0

m=

wherea = p? + 72, b = 2z.

We will perform the following transformation in equations (C2) and (C3).

procedures,

(i) (2n)th row —zx (2n — 1)th row,

(i) the similar calculations for columns,
lead these equations to

X, Y,
Yn Xn+l - szn

Zm 0 nC a"~ mp(O) ZZ::O 2Cma"™ mpr(nl)
Zm:O nC a*— mp’g.) an:O ncman mp’s12)

Second, repeating the procedures,

() (2n)th row —ax (2n — 2)th row,

(i) (2n — 1)th row —ax (2n — 3)th row,
we obtain

;0) &1)
... D Dy
C6) = n

©O=1 pff)

where, from equations (3. 20)»(“ is expressed in terms af, as

(k) = Z Cn b" wn+k+m'

Final procedures,
() (2n — 1)th row —bx (2n — 2)th row,

Xy
Yi

Xok-1

Yo 1
Xok

(C3)

(C4)

(C5)

First, the

(C6)

(C7)

(C8)
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(ii) (2n)th row —bx (2n — 1)th row,

show
. W2 Wou+1 -
C7 = C9
( 7) . W2n+1 W2y 42 ( )
due to
P = wison. (C10)

Therefore, we have verified equation (3.19). Equation (3.18) is verified similarly.
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