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Abstract. We prove analytically the Sasa–Satsuma conjecture which states that their solution
of bilinear form of the Ernst equation gives the Neugebauere–Kramer solution in particular
cases. This proof relates Hirota’s direct method with the Bäcklund transformation method and
opens the way towards the comprehensive interpretation of the Ernst equation.

1. Introduction

In [1, 2] one of the authors (TF) discussed the stationary axisymmetric solution, Tomimatsu–
Sato solution [3] (hereafter TS solution) of the Einstein equation in the framework of Hirota’s
direct method (direct method) [4]. This paper describes further development of those papers.

The motivation to study the solutions of the Einstein’s equation in the direct method is as
follows. In the direct method integrability is reduced to Pfaffian’s identities andN -soliton
solutions can be constructed in very simple and systematic ways. This is a great merit
of the direct method. However, this is the case in typical integrable systems such as the
KdV, KP and Toda lattice equations etc, which can be described in the ‘complete’ bilinear
forms. Here ‘complete’ means that these equations are expressed in terms of the Hirota’s
derivatives and constant coefficients. The Ernst equation is indeed beyond this category.
The TS solutions, its special series of solutions, satisfy some bilinear forms. However,
the bilinear forms are not complete in the sense that they involve ordinary derivatives and
that the coefficients of differentiated terms are not constants but functions of independent
variables. It also can not be expressed in the naive Lax pairs [5, 6]. Therefore, it was
not clear whether the direct method works well in this case. In [1] it was proved that the
direct method works well in the TS solutions. However, the proof (whose meaning will
be described in the last section) was complete in the restricted case of one dimension, the
Weyl solution, and incomplete in full two dimensions, the TS solution.

As is well known, there are many approaches to integrable systems; inverse scattering,
Bäcklund transformation, Lax representation, Sato theory etc. The direct method is one
among them and they are closely connected with one another. So it is natural to consider
that the difficulties mentioned above may be overcome by adopting the various techniques
other than the direct method. This paper is one of such trials.

Using the B̈acklund transformation, Y Nakamura [7] found two series of solutions to
the Ernst equation. Unfortunately these solutions are not physical. In the direct method,
the Ernst equation is decomposed to the bilinear forms in many ways. By rewriting the
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Bäcklund transformation adopted by Nakamura in bilinear forms, one of the authors (NS)
and Satsuma succeeded to extend Nakamura’s solutions (SS solutions) and showed that they
include the physical soliton solutions, Neugebauer–Kramer solutions (NK solutions) [8] in
particular cases. We call the latter statement the Sasa–Satsuma conjecture (SS conjecture)
since Sasa and Satsuma showed that their solutions include 2N soliton solution of the NK
solution for the cases ofN = 2 and 3 by means of computer program ‘REDUCE 3’ [9].
Namely, the SS solution is linked with the NK solution through the SS conjecture. The
NK solutions are reduced to the TS solutions in a limit. So the analytical proof of the SS
conjecture opens the way towards the comprehensive understanding of the Ernst equation
and complements the above-mentioned deficit of the previous works.

The central purpose of this work is to prove the SS conjecture analytically for general
N . However, using a merit of the direct method, we can extend the SS solutions furthermore
and obtain more general solutions.

This paper is organized as follows. In section 2, we review the SS conjecture.
Section 3 only contains the analytical proof of the SS conjecture. Straightforward but
tedious calculations in the proof are referred to in the appendices. The extension of the
SS solutions is discussed in section 4. Section 5 is devoted to concluding remarks and
discussion.

2. The Ernst equation and Sasa–Satsuma conjecture

The stationary axisymmetric vacuum gravitational field equations are reduced to the
following two equations

f̃

(
f̃ρρ + 1

ρ
f̃ρ + f̃zz

)
− f̃ 2

ρ − f̃ 2
z + ψ2

ρ + ψ2
z = 0 (2.1)

f̃

(
ψρρ + 1

ρ
ψρ + ψzz

)
− 2f̃ρψρ − 2f̃zψz = 0 (2.2)

whereρ and z are usual cylindrical coordinates and subscripts denote partial derivatives

such asf̃ρρ ≡ ∂2f̃

∂ρ2 etc. Defining a complex functionξ by

ξ ≡ 1− f̃ − iψ

1+ f̃ + iψ
(2.3)

we have the Ernst equation [10]:

(ξξ ∗ − 1)

(
ξρρ + 1

ρ
ξρ + ξzz

)
− 2ξ ∗(ξ2

ρ + ξ2
z ) = 0. (2.4)

By transforming the dependent variables as

f̃ ≡ F

G
ψ ≡ H

G
(2.5)

and introducingK by

K = H 2+ F 2

G
(2.6)

equations (2.1) and (2.2) are decomposed into[
D2
ρ +

1

ρ
Dρ +D2

z

]
G · F = 0 (2.7)[

D2
ρ +

1

ρ
Dρ +D2

z

]
H · F = 0 (2.8)[

D2
ρ +

1

ρ
Dρ +D2

z

]
K · F = 0 (2.9)
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whereDρ andDz are Hirota’sD-operators with respect toρ and z. Using the B̈acklund
transformation, Y Nakamura found a series of solutions to equations (2.1), (2.2) [7],

f̃ = ρn−1A(n)

A(n−1)
ψ = iρn−1Ã(n+1)

A(n−1)
(2.10)

or to equations (2.7)–(2.9)

F = ρn0A(n) G = ρn0−n+1A(n−1) K = ρn0+n−1A(n+1) H = iρn0Ã(n+1)

(2.11)

with n0 = n(n− 2)/2. Here the determinantsA(n) andÃ(n) are given by

A(n) =

∣∣∣∣∣∣∣∣∣∣

u0 iu1 i2u2 . . . in−1un−1

iu1 u0 iu1 . . . in−2un−2

i2u2 iu1 u0 . . . in−3un−3
...

...
...

. . .
...

in−1un−1 in−2un−2 in−3un−3 . . . u0

∣∣∣∣∣∣∣∣∣∣
(2.12)

and

Ã(n) = A(n)
[

1
n

]
(2.13)

where the minorA(n)
[
i

j

]
is defined by deleting theith row and thej th column fromA(n).

The elements of the determinants (2.12) and (2.13) satisfy the recurrence relations:(
∂ρ + m− 1

ρ

)
um = −∂zum−1(

∂ρ − m
ρ

)
um−1 = ∂zum (m = 1, 2, 3, . . .). (2.14)

It is noticed that the Jacobi identity reads

A(n+1)A(n−1) = [A(n)]2− [Ã(n+1)]2. (2.15)

By substituting equations (2.11) into equations (2.7)–(2.9), we find thatA(n) andÃ(n) satisfy
the bilinear forms,[

D2
ρ +

1

ρ
Dρ +D2

z

]
(ρn0−n+1A(n−1)) · (ρn0A(n)) = 0 (2.16)[

D2
ρ +

1

ρ
Dρ +D2

z

]
(ρn0+n−1A(n+1)) · (ρn0A(n)) = 0 (2.17)[

D2
ρ +

1

ρ
Dρ +D2

z

]
(ρn0Ã(n+1)) · (ρn0A(n)) = 0. (2.18)

From these facts Sasa and Satsuma found a new series of exact solutions (SS solutions) [9]:

f̃ = A(n)

Ã(n+1) − 1
4an
ρn−1A(n+1) + anρ1−nA(n−1)

(2.19)

ψ =
i[ 1

4an
ρn−1A(n+1) + anρ1−nA(n−1)]

Ã(n+1) − 1
4an
ρn−1A(n+1) + anρ1−nA(n−1)

(2.20)

with a constantan. Furthermore, it has been argued that the SS solutions (2.19) and (2.20)
include the NK solutions in the particular choice of an initial valueu0 and constanta2N

as equations (2.30) and (2.33), respectively (SS conjecture). They checked this conjecture
numerically for theN = 1, 2 andN = 3 cases. The main purpose of this paper is to prove
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analytically the SS conjecture for arbitraryN . Let us explain the SS conjecture in more
detail. Let us formulate this conjecture for arbitraryN .

The NK solutions are given by [8]

ξ2N = g2N

f2N
(2.21)

wheref2N andg2N are the double Casorati determinants:

f2N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . z2N
...

...
. . .

...

zN−1
1 zN−1

2 . . . zN−1
2N

S1 S2 . . . S2N

z1S1 z2S2 . . . z2NS2N
...

...
. . .

...

zN−1
1 S1 zN−1

2 S2 . . . zN−1
2N S2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.22)

g2N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . z2N
...

...
. . .

...

zN1 zN2 . . . zN2N
S1 S2 . . . S2N

z1S1 z2S2 . . . z2NS2N
...

...
. . .

...

zN−2
1 S1 zN−2

2 S2 . . . zN−2
2N S2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.23)

and

Sj = rjeiωj rj =
√
ρ2+ (z+ zj )2 (j = 1, 2, . . . ,2N) (2.24)

with real parameterszj andωj . From the definition off̃ andψ it follows that

f̃ = f2Nf
∗
2N − g2Ng

∗
2N

(f2N + g2N)(f
∗
2N + g∗2N)

ψ = i(f ∗2Ng2N − f2Ng
∗
2N)

(f2N + g2N)(f
∗
2N + g∗2N)

. (2.25)

The SS conjecture states that the SS solutions (2.19) and (2.20) with particular conditions
(2.30) and (2.33) satisfy equation (2.25) when the NK solutions (2.22), (2.23) have been
substituted into the right-handside of equation (2.25). Given the NK solutionf2N, g2N , if
the determinantsA(n) andÃ(n) take the forms,

ρ−2N+1A(2N−1) = −B
a2N

g2Nf
∗
2N (2.26)

A(2N) + Ã(2N+1) = −2Bf2Nf
∗
2N (2.27)

A(2N) − Ã(2N+1) = 2Bg2Ng
∗
2N (2.28)

ρ2N−1A(2N+1) = 4a2NBg
∗
2Nf2N (2.29)

equation (2.25) is automatically satisfied. HereB is a common factor to be determined.
Sasa and Satsuma found forN = 1, 2 and 3 that equations (2.26)–(2.29) are satisfied when
u0 anda2N are chosen as follows

u0 = b2N

2N∑
j=1

Cj
ρ

S∗j
(2.30)

with

Cj ≡ (−1)j+1Z2N

[
2N
1

]
and b2N = (−1)N−1( 1

4)
N(N−1)Z

−2(N−1)
2N (2.31)
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whereZ2N is Vandermonde’s determinant given by

Z2N =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . z2N

z2
1 z2

2 . . . z2
2N

...
...

. . .
...

z2N−1
1 z2N−1

2 . . . z2N−1
2N

∣∣∣∣∣∣∣∣∣∣
. (2.32)

The constanta2N is
a2N = −4N−1Z2Nb2N. (2.33)

In this caseB becomes
B = (ρN0S∗1S

∗
2 . . . S

∗
2N)
−1. (2.34)

Then the analytical proof of the SS conjecture for an arbitraryN is reduced to the proof of
a set of equations (2.26)–(2.29).

3. The proof of the Sasa–Satsuma conjecture

In this section we give the analytical proof of the SS conjecture. From equations (2.26)–
(2.29) it is estimated thatA(n) andÃ(n) should be factorized as

A(2N−1) = αNβN (3.1)

A(2N) + Ã(2N+1) = βNγN (3.2)

A(2N) − Ã(2N+1) = αNδN (3.3)

A(2N+1) = γNδN (3.4)
where the determinantsαN, βN, γN andδN are defined as

αN = γN
[
N

N

]
(3.5)

βN = δN
[
N + 1
N + 1

]
(3.6)

γN =

∣∣∣∣∣∣∣∣∣∣

u0+ u2 −u1− u3 u2+ u4 . . . (−1)N+1(uN−1+ uN+1)

u1+ u3 u0− u4 −u1+ u5 . . . (−1)N(uN−2− uN+2)

u2+ u4 u1− u5 u0+ u6 . . . (−1)N−1(uN−3+ uN+3)
...

...
...

. . .
...

uN−1+ uN+1 uN−2− uN+2 uN−3+ uN+3 . . . u0+ (−1)N+1u2N

∣∣∣∣∣∣∣∣∣∣
(3.7)

δN =

∣∣∣∣∣∣∣∣∣∣∣∣

u0 −u1 u2 −u3 . . . (−1)NuN
2u1 u0− u2 −u1+ u3 u2− u4 . . . (−1)N−1(uN−1− uN+1)

2u2 u1− u3 u0+ u4 −u1− u5 . . . (−1)N−2(uN−2+ uN+2)

2u3 u2− u4 u1+ u5 u0− u6 . . . (−1)N−3(uN−3− uN+3)
...

...
...

...
. . .

...

2uN uN−1− uN+1 uN−2+ uN+2 uN−3− uN+3 . . . u0+ (−1)Nu2N

∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.8)
un can be constructed from the recursion relation (2.14) with the initial condition (2.30):

u0 = x0 (3.9)

u2k+2 =
k∑
n=0

(−1)k+1−n k + 1

k + 1− n k+nCk−n22nxn + 22k+1xk+1 (3.10)

u2k+1 =
k∑
n=0

(−1)k+1−n
k+nCk−n22nyn (k = 0, 1, 2, . . .) (3.11)
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where

xn = 1

ρ2n−1

2N∑
j=1

Cje
iωj r2n−1

j (3.12)

yn = 1

ρ2n

2N∑
j=1

Cje
iωj (z+ zj )r2n−1

j (n = 0, 1, 2, . . .). (3.13)

Substituting the special solutions (3.9)–(3.11) into equations (3.5)–(3.8) we obtain after
tedious calculations (see appendix A)

α2k = (−1)k−12(2k−1)2

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 . . . xk−1 yk−1 xk
y1 x2− x1 . . . yk−1 xk − xk−1 yk
...

...
. . .

...
...

...

xk−1 yk−1 . . . x2k−3 y2k−3 x2k−2

yk−1 xk − xk−1 . . . y2k−3 x2k−2− x2k−3 y2k−2

xk yk . . . x2k−2 y2k−2 x2k−1

∣∣∣∣∣∣∣∣∣∣∣∣
(3.14)

α2k−1 = (−1)k−12(2k−2)2

∣∣∣∣∣∣∣∣∣∣

x1 y1 . . . xk−1 yk−1

y1 x2− x1 . . . yk−1 xk − xk−1
...

...
. . .

...
...

xk−1 yk−1 . . . x2k−3 y2k−3

yk−1 xk − xk−1 . . . y2k−3 x2k−2− x2k−3

∣∣∣∣∣∣∣∣∣∣
(3.15)

and

β2k = (−1)k2(2k−1)2

∣∣∣∣∣∣∣∣∣∣

x0 y0 . . . xk−1 yk−1

y0 x1− x0 . . . yk−1 xk − xk−1
...

...
. . .

...
...

xk−1 yk−1 . . . x2k−2 y2k−2

yk−1 xk − xk−1 . . . y2k−2 x2k−1− x2k−2

∣∣∣∣∣∣∣∣∣∣
(3.16)

β2k+1 = (−1)k2(2k)
2

∣∣∣∣∣∣∣∣∣∣∣∣

x0 y0 . . . xk−1 yk−1 xk
y0 x1− x0 . . . yk−1 xk − xk−1 yk
...

...
. . .

...
...

...

xk−1 yk−1 . . . x2k−2 y2k−2 x2k−1

yk−1 xk − xk−1 . . . y2k−2 x2k−1− x2k−2 y2k−1

xk yk . . . x2k−1 y2k−1 x2k

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.17)

We can expressαN and βN in terms of the Hankel determinants by taking the condition
r2
j = ρ2+ (z+ zj )2 into consideration (see appendix C):

αN = (−1)
1
2 (N−1)(N+2) 2(N−1)2

ρ(N−1)2

∣∣∣∣∣∣∣∣
v0 v1 . . . vN−2

v1 v2 . . . vN−1
...

...
. . .

...

vN−2 vN−1 . . . v2N−4

∣∣∣∣∣∣∣∣ (3.18)

and

βN = (−1)
1
2N(N−1) 2(N−1)2

ρN(N−2)

∣∣∣∣∣∣∣∣
w0 w1 . . . wN−1

w1 w2 . . . wN
...

...
. . .

...

wN−1 wN . . . w2N−2

∣∣∣∣∣∣∣∣ (3.19)

where

vn =
2N∑
j=1

CjSjz
n
j wn =

2N∑
j=1

Cj

S∗j
znj . (3.20)
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We have the relation between some Hankel determinants and double Casorati
determinants:

∣∣∣∣∣∣∣∣
t0 t1 . . . tN−1

t1 t2 . . . tN
...

...
. . .

...

tN−1 tN . . . t2N−2

∣∣∣∣∣∣∣∣ = (−1)
1
2N(N−1)Z−1

M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ11 . . . φM1

φ12 . . . φM2
...

. . .
...

φ1N . . . φMN
ψ11 . . . ψM1

ψ12 . . . ψM2
...

. . .
...

ψ1,M−N . . . ψM,M−N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.21)

where

tn =
M∑
j=1

znj ej

φjn = zn−1
j

M∏
k=1,k 6=j

(zk − zj )ej ψjn = zn−1
j .

(3.22)

By virtue of this relation we can link the SS solution with the NK solution:

αN = (−1)N+1 2(N−1)2

ρ(N−1)2
ZN−2

2N g2N (3.23)

βN = 2(N−1)2

ρN(N−2)

ZN−1
2N f ∗2N

S∗1S
∗
2 . . . S

∗
2N

(3.24)

γN = (−1)N
2N

2

ρN
2Z

N−1
2N f2N (3.25)

δN = 2N
2

ρN
2−1

ZN2Ng
∗
2N

S∗1S
∗
2 . . . S

∗
2N

. (3.26)

Equations (3.23)–(3.26) and equations (3.1)–(3.4) immediately lead to equations (2.26)–
(2.29) and, therefore, the SS conjecture has been proved explicitly.

4. The extension of Sasa–Satsuma solutions

In the direct method, the Ernst equation is decomposed to the bilinear forms in many
different ways and correspondingly we obtain various series of solutions. Also the special
decomposition of the Ernst equations (2.7)–(2.9) or equivalently (2.16)–(2.18) enable us
to extend the SS solutions furthermore. Namely by the help of equations (2.7)–(2.9) and
(2.16)–(2.18) we can generalize the functionsF , G, H andK in equations (2.7)–(2.9) as

F = dρn0A(n) (4.1)

G = ρn0[a1Ã
(n+1) + b1ρ

n−1A(n+1) + c1ρ
1−nA(n−1)] (4.2)

H = ρn0[a2Ã
(n+1) + b2ρ

n−1A(n+1) + c2ρ
1−nA(n−1)] (4.3)

K = ρn0[a3Ã
(n+1) + b3ρ

n−1A(n+1) + c3ρ
1−nA(n−1)] (4.4)

with the constantsai, bi, ci(i = 1, 2, 3) andd. HoweverF ,G,H andK are not independent
and subject to equation (2.6) or equivalently the Jacobi identity (2.15). Hence these constants
must satisfy the relations:

a1b3+ a3b1 = 2a2b2 (4.5)
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a1c3+ a3c1 = 2a2c2 (4.6)

b1b3 = b2
2 (4.7)

c1c3 = c2
2 (4.8)

a1a3− a2
2 = d2 (4.9)

b1c3+ b3c1− 2b2c2 = d2. (4.10)

Then we have two series of exact solutions of equations (2.1) and (2.2):

f̃ = F

G
ψ = H

G
(4.11)

f̃ = F

K
ψ = H

K
(4.12)

which includes both the SS solutions (a1 = a3 = d = 1 and a2 = 0) and Nakamura’s
solutions (c1 = b3 = d = 1, a2 = i and others= 0) [7]. The relation between our
solutions (4.11), (4.12) and the NK solutions on an arbitrary background, for instance, the
extension to the Einstein–Maxwell system [11] or the Korotkin–Matveev solutions [12] is
still not obvious.

5. Concluding remarks and discussion

In the previous section we analytically proved that the SS solutions include the NK solutions
in a particular case. Substituting equations (2.26)–(2.29) into equations (2.16)–(2.18) we
have the bilinear forms [9] satisfied by NK solutions:[

D2
ρ +

1

ρ
Dρ +D2

z

]
(f2Ng

∗
2N) · (g2Ng

∗
2N − f2Nf

∗
2N) = 0 (5.1)[

D2
ρ +

1

ρ
Dρ +D2

z

]
(f ∗2Ng2N) · (g2Ng

∗
2N − f2Nf

∗
2N) = 0 (5.2)[

D2
ρ +

1

ρ
Dρ +D2

z

]
(g2Ng

∗
2N + f2Nf

∗
2N) · (g2Ng

∗
2N − f2Nf

∗
2N) = 0. (5.3)

We have indirectly proved equations (5.1)–(5.3) through the Bäcklund transformation.
However, it is another mathematically interesting problem to prove equations (5.1)–(5.3)
directly. This, however, is still an open question. In [1, 2], we were confronted with the
same problem in Tomimatsu–Sato solutions, that is, direct proof of Nakamura’s conjecture
which will be explained briefly. Before discussing this problem we add one more note in
relation with equations (5.1)–(5.3). Namely there is another series of exact solutions called
the extended-TS solutions [13],ξn = g′n/f ′n. The bilinear forms satisfied by them have
been also proposed [9]:

L(f ′ng
′∗
n) · (g′ng′∗n − f ′nf ′∗n) = 0 (5.4)

L(f ′∗ng
′
n) · (g′ng′∗n − f ′nf ′∗n) = 0 (5.5)

L(g′ng
′∗
n + f ′nf ′∗n) · (g′ng′∗n − f ′nf ′∗n) = 0 (5.6)

where

L = (x2− 1)D2
x + x(Dx + ∂x)− (y2− 1)D2

y − y(Dy + ∂y). (5.7)

The independent variablesx and y are usual prolated spheroidal coordinates which are
connected toρ andz by

ρ = K(x2− 1)1/2(1− y2)1/2 z = Kxy + ζ (5.8)
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with constantsK and ζ . To obtain the explicit expressions of the extended-TS solutions
and to prove equations (5.4)–(5.6) for arbitraryn are unsolved problems.

Let us return to the problem of the TS solution. A Nakamura gave the following
conjecture (Nakamura’s conjecture) [14]: The general solution of Toda molecule withn

lattice cites reproduces the TS solution with the deformation parameterδ = n in a particular
choice of initial function. Direct proof of this conjecture is successful only in the restricted
case, Weyl solution, which is obtained by the dimensional reduction by one. The trouble
comes from the fact that the TS solution is embedded in two-dimensional space. Concretely
speaking, the reason for the difficulties comes from the fact that two directional Wronskians
appeared in two dimensions prohibits Plücker’s identity, one of Pfaffian’s identities, unlike
in the one-dimensional case. We also discussed the same problem from a quite different
approach, acceleration method [2]. However, the situation is quite the same as in the direct
method. In this case the trouble is that the addition theorem [15], the key formula for the
proof, is only valid in one dimension. Thus, for the sake of completeness we may be forced
to go beyond the bilinear formalism or to develop a new acceleration method. The proof of
the SS conjecture in this paper has circumvented this trouble in the two-dimensional case
by the help of the B̈acklund transformation. So this may be a useful hint to the extensions
mentioned above.
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Appendix A

First, we show equations (3.14) and (3.15). DefiningEk andOk as

Ek ≡ u2k−2+ u2k (A1)

Ok ≡ u2k−1+ u2k+1 (k = 1, 2, 3, . . .) (A2)

it follows from equations (3.9)–(3.11) that

αN =

∣∣∣∣∣∣∣∣∣∣∣∣

E1 −O1 E2 −O2 . . .

O1 E1− E2 −O1+O2 E2− E3 . . .

E2 O1−O2 E1− E2+ E3 −O1+O2−O3 . . .

O2 E2− E3 O1−O2+O3 E1− E2+ E3− E4 . . .

E3 O2−O3 E2− E3+ E4 O1−O2+O3−O4 . . .
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣
. (A3)

In the case of the special solutions (3.9)–(3.11) we have

Ek = E(0)k Ok = O(0)
k (A4)

where we have introducedE(a)k andO(a)
k as

E
(a)
k =

k∑
n=1

(−1)k−n
2k − 1

2n− 1
k−2+nCk−n22n−1xn+a (A5)

O
(a)
k =

k∑
n=1

(−1)k+1−n
k−1+nCk−n22nyn+a. (A6)

We substitute equations (A5) and (A6) into equation (A3) and transform equation (A3)
according to the following procedures in the ‘stepn’:
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(i) ((2m + 1)th row)−(−1)m+1−n 2m+1
2n−1 m−1+nCm+1−n× ((2n − 1)th row),m = n, n +

1, . . . , [ N2 ] − 1.
(ii) The similar calculations for columns.
(iii) ((2m+2)th row)−(−1)m+1−n

m+nCm+1−n× ((2n)th row),m = n, n+1, . . . , [ N−1
2 ]−

1.
(iv) The similar calculations for columns.
Calculation from the step 1 tom for αN leads to equations (3.14) and (3.15), which we

will show by induction.
Suppose that the above statement is correct forN = 1, 2, . . .2k. Application of the

procedures forα2k to α2k+1 leads to the expression as

α2k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2x1 4y1 8x2 16y2 . . . 22k−1xk −c2k,1

−4y1 8(x1− x2) −16y2 32(x2− x3) . . . −22kyk c2k,2

8x2 16y2 32x3 64y3 . . . 22k+1xk+1 −c2k,3

−16y2 32(x2− x3) −64y3 128(x3− x4) . . . −22k+2yk+1 c2k,4
...

...
...

...
. . .

...
...

22k−1xk 22kyk 22k+1xk+1 22k+2yk+1 . . . 24k−3x2k−1 −c2k,2k−1

c2k,1 c2k,2 c2k,3 c2k,4 . . . c2k,2k−1 c2k,2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A7)

with

c2k,2n+1 =
2n∑
m=0

2nCmO
(0)
k−n+m (n = 0, 1, . . . , k − 1) (A8)

c2k,2n+2 =
2n∑
m=0

2nCm(E
(0)
k−n+m − E(0)k−n+m+1) (n = 0, 1, . . . , k − 2) (A9)

c2k,2k =
2k∑
m=1

(−1)m−1E(0)m . (A10)

Equations (A8) and (A9) were derived from the relations:

2l∑
m=0

(−1)mO(0)
k−l+m −

l−1∑
n=0

(−1)l−n
2l + 1

2n+ 1
l+nCl−n

2n∑
m=0

2nCmO
(0)
k−n+m =

2l∑
m=0

2lCmO
(0)
k−l+m

(A11)
2l+1∑
m=0

(−1)mE(0)k−l+m −
l−1∑
n=0

(−1)l−n l+n+1Cl−n
2n∑
m=0

2nCm(E
(0)
k−n+m − E(0)k−n+m+1)

=
2l∑
m=0

2lCm(E
(0)
k−l+m − E(0)k−l+m+1). (A12)

For detail see appendix B.
It is easily seen that

2n∑
m=0

2nCmO
(0)
k−n+m = 22nO

(n)
k (A13)

2n∑
m=0

2nCm(E
(0)
k−n+m − E(0)k−n+m+1) = 22n(E

(n)
k − E(n)k+1). (A14)
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Performing the procedures from the step 1 to stepm in equation (A3), we have

α2k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2x1 4y1 8x2 16y2 . . . 22k−1xk −O(0)
k

−4y1 8(x1 − x2) −16y2 32(x2 − x3) . . . −22kyk E
(0)
k − E(0)k+1

8x2 16y2 32x3 64y3 . . . 22k+1xk+1 −22O
(1)
k

−16y2 32(x2 − x3) −64y3 128(x3 − x4) . . . −22k+2yk+1 22(E
(1)
k − E(1)k+1)

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

22k−1xk 22kyk 22k+1xk+1 22k+2yk+1 . . . 24k−3x2k−1 −22(k−1)O
(k−1)
k

O
(0)
k E

(0)
k − E(0)k+1 22O

(1)
k 22(E

(1)
k − E(1)k+1) . . . 22(k−1)O

(k−1)
k c2k,2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A15)

The procedures,
(i) (2k)th row−(−1)k−n k−1+nCk−n× (2n)th row, n = 1, 2, . . . , k − 1
(ii) the similar processes for columns,

reduce equation (A15) to

α2k+1 =

∣∣∣∣∣∣∣∣∣∣

2x1 4y1 . . . 22k−1xk 22kyk
−4y1 8(x1− x2) . . . −22kyk 22k+1(xk − xk+1)
...

...
. . .

...
...

22k−1xk 22kyk . . . 24k−3x2k−1 24k−2y2k−1

−22kyk 22k+1(xk − xk+1) . . . −24k−2y2k−1 24k−1(x2k−1− x2k)

∣∣∣∣∣∣∣∣∣∣
. (A16)

Likewise,α2k+2 is expressed as

α2k+2 =

∣∣∣∣∣∣∣∣∣∣

2x1 4y1 . . . 22k−1xk 22kyk c2k+1,1

−4y1 8(x1 − x2) . . . −22kyk 22k+1(xk − xk+1) −c2k+1,2

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

22k−1xk 22kyk . . . 24k−3x2k−1 24k−2y2k−1 c2k+1,2k−1

−22kyk 22k+1(xk − xk+1) . . . −24k−2y2k−1 24k−1(x2k−1 − x2k) −c2k+1,2k

c2k+1,1 c2k+1,2 . . . c2k+1,2k−1 c2k+1,2k c2k+1,2k+1

∣∣∣∣∣∣∣∣∣∣
(A17)

with

c2k+1,2n+1 =
2n∑
m=0

2nCmE
(0)
k+1−n+m (A18)

c2k+1,2n+2 =
2n∑
m=0

2nCm(O
(0)
k−n+m −O(0)

k+1−n+m) (n = 0, 1, . . . , k − 1) (A19)

c2k+1,2k+1 =
2k+1∑
m=1

(−1)m−1E(0)m . (A20)

It is easily checked that

2n∑
m=0

2nCmE
(0)
k+1−n+m = 22nE

(n)

k+1 (A21)

2n∑
m=0

2nCm(O
(0)
k−n+m −O(0)

k+1−n+m) = 22n+1Ẽ
(n)

k+1 (A22)

with

Ẽ
(a)
k =

k∑
n=1

(−1)k−n
2k − 1

2n− 1
k−2+nCk−n22n−1yn+a. (A23)
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Then we have

α2k+2 =

∣∣∣∣∣∣∣∣∣∣∣∣

2x1 4y1 . . . 22k−1xk 22kyk E
(0)
k+1

−4y1 8(x1 − x2) . . . −22kyk 22k+1(xk − xk+1) −2Ẽ(0)k+1
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

22k−1xk 22kyk . . . 24k−3x2k−1 24k−2y2k−1 22k−2E
(k−1)
k+1

−22kyk 22k+1(xk − xk+1) . . . −24k−2y2k−1 24k−1(x2k−1 − x2k) −22k−1Ẽ
(k−1)
k+1

E
(0)
k+1 2Ẽ(0)k+1 . . . 22k−2E

(k−1)
k+1 22k−1Ẽ

(k−1)
k+1 c2k+1,2k+1

∣∣∣∣∣∣∣∣∣∣∣∣
. (A24)

The procedures,
(i) (2k + 1)th row−(−1)k+1−n 2k+1

2n−1 k−1+nCk+1−n× (2n− 1)th row,n = 0, 1, . . . , k
(ii) the similar calculations for columns,

give

α2k+2 =

∣∣∣∣∣∣∣∣∣∣

2x1 4y1 . . . 22k−1xk 22kyk 22k+1xk+1

−4y1 8(x1 − x2) . . . −22kyk 22k+1(xk − xk+1) −22k+2yk+1
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

22k−1xk 22kyk . . . 24k−3x2k−1 24k−2y2k−1 24k−1x2k

−22kyk 22k+1(xk − xk+1) . . . −24k−2y2k−1 24k−1(x2k−1 − x2k) −24ky2k

22k+1xk+1 22k+2yk+1 . . . 24k−1x2k 24ky2k 24k+1x2k+1

∣∣∣∣∣∣∣∣∣∣
. (A25)

Therefore we have verified equations (3.14) and (3.15).
Next, we will show equations (3.16) and (3.17). By means ofEk and Ok, βN is

expressed as

βN =

∣∣∣∣∣∣∣∣∣∣

u0 −u1 u2 −u3 u4 . . .

2u1 2u0 − E1 −2u1 +O1 2u2 − E2 −2u3 +O2 . . .

2u2 2u1 −O1 2u0 − (E1 − E2) −2u1 + (O1 −O2) 2u2 − (E2 − E3) . . .

2u3 2u2 − E2 2u1 − (O1 −O2) 2u0 − (E1 − E2 + E3) −2u1 + (O1 −O2 +O3) . . .

2u4 2u3 −O2 2u2 − (E2 − E3) 2u1 − (O1 −O2 +O3) 2u0 − (E1 − E2 + E3 − E4) . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

∣∣∣∣∣∣∣∣∣∣
.

(A26)
Let us transform equation (A26) along the procedures:

(i) Third row +(2× 1)th row,
(ii) mth row+ (m− 2)th row,m = 4, 5, . . . , N ,
(iii) mth column+ (m− 2)th column,m = 3, 4, . . . , N .
Substituting (3.9)–(3.11) into it, we obtain

βN =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 y0 E
(0)
1 −O(0)

1 E
(0)
2 . . .

−2y0 2(x0− x1) O
(0)
1 E

(0)
1 − E(0)2 −O(0)

1 +O(0)
2 . . .

2E(0)1 −O(0)
1 22E

(1)
1 −22O

(1)
1 22E

(1)
2 . . .

2O(0)
1 E

(0)
1 − E(0)2 22O

(1)
1 22(E

(1)
1 − E(1)2 ) −22(O

(1)
1 −O(1)

2 ) . . .

2E(0)2 O
(0)
1 −O(0)

2 22E
(1)
2 22(O

(1)
1 −O(1)

2 ) 22(E
(1)
1 − E(1)2 + E(1)3 ) . . .

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A27)
The similar procedures forαN lead us to equations (3.16) and (3.17).

Appendix B

Here we show equations (A11) and (A12). From the comparison of the coefficients of both
hand sides of equations (A11) and (A12), it follows that they are equivalent to the relations
for a = 0, 1, . . . , n:

n∑
k=a
(−1)k−a n+k+1Cn−k 2kCk−a =

{
1 n− a: even

0 n− a: odd.
(B1)
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It should be noticed that
n∑
k=0

(−1)k
(n+ k + 1)!

(k!)2(n− k)! x
k+n = d

dx
[xn+1Pn(1− 2x)] (B2)

wherePn(1− 2x) are the Legendre polynomials.

B.1. The casea = 0

From equation (B2), we have
n∑
k=0

(−1)k n+k+1Cn−k 2kCk = 1
2

∫ 1

0
dx x−n−

1
2

d

dx
[xn+1Pn(1− 2x)] = 1

2[1+ (−1)n]. (B3)

B.2. The casea > 1

We have
n∑
k=a
(−1)k−a n+k+1Cn−k 2kCk−a =

a∑
p=0

(−1)p−a aCp
n∑
k=0

(−1)k n+k+1Cn−k 2k+a−pCk. (B4)

From equation (B2), we obtain forp = 0, 1, . . . , a − 1,
n∑
k=0

(−1)k n+k+1Cn−k 2k+a−pCk =
n∑
k=0

(−1)k
(n+ k + 1)!

(k!)2(n− k)!
a−p∑
j=1

qj

k + j

=
a−p∑
j=1

qj

∫ 1

0
dx x−n+j−1 d

dx
[xn+1Pn(1− 2x)] = 2a−p−1(−1)n (B5)

with
∑a−p
j=1 qj = 2a−p−1. Thus we can verify equation (B1) as follows

n∑
k=a
(−1)k−a n+k+1Cn−k 2kCk−a = 1

2 +
a∑

p=0

(−1)p−a aCp2a−p−1(−1)n = 1
2[1+ (−1)n−a].

(B6)

Appendix C

Here we show equation (3.19). Let us defineXn andYn as

Xn ≡
2N∑
j=1

Cje
iωj r2n−1

j

Yn ≡
2N∑
j=1

Cje
iωj (z+ zj )r2n−1

j .

(C1)

Then equations (3.16) and (3.17) are rewritten as

β2k = (−1)k
2(2k−1)2

ρ(2k)(2k−2)

∣∣∣∣∣∣∣∣∣∣

X0 Y0 . . . Xk−1 Yk−1

Y0 X1− ρ2X0 . . . Yk−1 Xk − ρ2Xk−1
...

...
. . .

...
...

Xk−1 Yk−1 . . . X2k−2 Y2k−2

Yk−1 Xk − ρ2Xk−1 . . . Y2k−2 X2k−1− ρ2X2k−2

∣∣∣∣∣∣∣∣∣∣
(C2)

β2k+1 = (−1)k
2(2k)

2

ρ(2k+1)(2k−1)
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×

∣∣∣∣∣∣∣∣∣∣∣∣

X0 Y0 . . . Xk−1 Yk−1 Xk
Y0 X1− ρ2X0 . . . Yk−1 Xk − ρ2Xk−1 Yk
...

...
. . .

...
...

...

Xk−1 Yk−1 . . . X2k−2 Y2k−2 X2k−1

Yk−1 Xk − ρ2Xk−1 . . . Y2k−2 X2k−1− ρ2X2k−2 Y2k−1

Xk Yk . . . X2k−1 Y2k−1 X2k

∣∣∣∣∣∣∣∣∣∣∣∣
. (C3)

Introducingp(k)m as

p(k)m =
2N∑
j=1

Cj

S∗j
zkj (bzj + z2

j )
m (C4)

Xn andYn are expressed as

Xn =
n∑

m=0
nCma

n−mp(0)m

Yn = z
n∑

m=0
nCma

n−mp(0)m +
n∑

m=0
nCma

n−mp(1)m

(C5)

wherea = ρ2+ z2, b = 2z.
We will perform the following transformation in equations (C2) and (C3). First, the

procedures,
(i) (2n)th row−z× (2n− 1)th row,
(ii) the similar calculations for columns,

lead these equations to∣∣∣∣∣∣∣∣∣
. . .

...
...

. . . Xn Yn . . .

. . . Yn Xn+1− ρ2Xn . . .
...

...
. . .

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
. . .

...
...

. . .
∑n

m=0 nCma
n−mp(0)m

∑n
m=0 nCma

n−mp(1)m . . .

. . .
∑n

m=0 nCma
n−mp(1)m

∑n
m=0 nCma

n−mp(2)m . . .
...

...
. . .

∣∣∣∣∣∣∣∣∣ . (C6)

Second, repeating the procedures,
(i) (2n)th row−a× (2n− 2)th row,
(ii) (2n− 1)th row−a× (2n− 3)th row,

we obtain

(C6) =

∣∣∣∣∣∣∣∣∣
. . .

...
...

. . . p(0)n p(1)n . . .

. . . p(1)n p(2)n . . .
...

...
. . .

∣∣∣∣∣∣∣∣∣ (C7)

where, from equations (3.20),p(k)n is expressed in terms ofwn as

p(k)n =
n∑

m=0
nCmb

n−mwn+k+m. (C8)

Final procedures,
(i) (2n− 1)th row−b× (2n− 2)th row,
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(ii) (2n)th row−b× (2n− 1)th row,
show

(C7) =

∣∣∣∣∣∣∣∣∣
. . .

...
...

. . . w2n w2n+1 . . .

. . . w2n+1 w2n+2 . . .
...

...
. . .

∣∣∣∣∣∣∣∣∣ (C9)

due to

p
(k+2n)
0 = wk+2n. (C10)

Therefore, we have verified equation (3.19). Equation (3.18) is verified similarly.

References

[1] Fukuyama T, Kamimura K and Yu S 1995J. Phys. Soc. Japan64 3201
[2] Fukuyama T and Imai T 1995J. Phys. Soc. Japan64 3682
[3] Tomimatsu A and Sato H 1973Prog. Theor. Phys.50 95
[4] Hirota R 1980Solitoned R K Bullough and P J Caudrey (New York: Springer) p 157
[5] Belinskii V A and Zakharov V E 1978Sov. Phys.–JETP48 985
[6] Maison D 1978Phys. Rev. Lett.41 521
[7] Nakamura Y 1983J. Math. Phys.24 606
[8] Kramer D and Neugebauer G 1980Phys. Lett.75A 259
[9] Sasa N and Satsuma J 1993J. Phys. Soc. Japan62 1153

[10] Ernst F J 1968Phys. Rev.167 1175
[11] Neugebauer G and Kramer D 1983J. PhysiqueA 16 1927
[12] Korotkin D A and Matveev V B 1989 Leningrad Math. J.1 379
[13] Kinnersley W and Chitre D M 1978J. Math. Phys.19 2037
[14] Nakamura A and Ohta Y 1991J. Phys. Soc. Japan60 1853
[15] Arai M, Okamoto K and Kametaka Y 1988Japan. J. Appl. Phys.5 145


